Rok wydania: 2023
Numer czasopisma: 3
Słowa kluczowe: kultura organizacyjna, uczenie maszynowe, drzewa decyzyjne, maszyna wektorów nośnych, algorytm k-najbliższych sąsiadów
Strony: 264-272
Język publikacji: Angielski
Predykcja typu kultury organizacyjnej z wykorzystaniem uczenia maszynowego
Abstrakt
Głównym celem artykułu jest opracowanie metody predykcji typu kultury organizacyjnej z wykorzystaniem uczenia maszynowego. Metoda ma bazować na popularnym arkuszu OCAI autorstwa Camerona i Quinna (2022). Dla osiągnięcia głównego celu pracy posłużono się wybranymi algorytmami uczenia maszynowego. Opracowana metoda przede wszystkim zmniejsza wysiłek poznawczy zarówno po stronie respondentów tradycyjnych arkuszy badania kultury organizacyjnej, jak i po stronie badaczy, którzy analizują wyniki tradycyjnych arkuszy diagnozy kultur organizacyjnych. Zmniejszenie wysiłku poznawczego po stronie respondentów wynika z faktu, że nie muszą oni przy każdym z sześciu pytań rozdzielać 100 punktów na każdy z typów kultury organizacyjnej. W opracowanej metodzie jedynym zadaniem respondentów jest wskazanie dominującego typu kultury organizacyjnej w każdym z sześciu kryteriów (pytań w ankiecie). Dodatkowym celem artykułu jest przedstawienie uczenia maszynowego jako przydatnego instrumentarium ilościowego dla rozwiązywania problemów występujących w teorii i praktyce nauk o zarządzaniu i jakości.
Bibliografia
[1] Abdolrasol M.G., Hussain S.S., Ustun T.S., Sarker M.R., Hannan M.A., Mohamed R., Abd Ali J., Mekhilef S., Milad A. (2021), Artificial Neural Networks Based Optimization Techniques: A Review, „Electronics”, Vol. 10, No. 21, p. 2689.
[2] Adam A., Yuniarsih T., Ahman E., Kusnendi K. (2020), The Mediation Effect of Organizational Commitment in the Relation of Organization Culture and Employee Performance, 3rd Global Conference on Business, Management, and Entrepreneurship (GCBME 2018), Atlantis Press, Amsterdam, pp. 260–264.
[3] Alassaf D., Dabić M., Shifrer D., Daim T. (2020), The Impact of Open-border Organization Culture and Employees’ Knowledge, Attitudes, and Rewards with Regards to Open Innovation: an Empirical Study, „Journal of Knowledge Management”, Vol. 24, No. 9, pp. 2273–2297.
[4] Aryani R., Widodo W. (2020), The Determinant of Organizational Culture and Its Impact on Organization: A Conceptual Framework, „International Journal of Higher Education”, Vol. 9, No. 3, pp. 64–70.
[5] Azeem M., Ahmed M., Haider S., Sajjad M. (2021), Expanding Competitive Advantage through Organizational Culture, Knowledge Sharing and Organizational Innovation, „Technology in Society”, Vol. 66, p. 101635.
[6] Bakheet S., Al-Hamadi A. (2021), A Framework for Instantaneous Driver Drowsiness Detection Based on Improved HOG Features and Naïve Bayesian Classification, „Brain Sciences”, Vol. 11, No. 2, p. 240.
[7] Blau P.M. (1968), Organisations, Theories, [in:] D.L. Sills (Eds.), International Encyclopedia of Social Sciences, McMillan, New York.
[8] Cameron K.S., Quinn R.E., DeGraff J., Thakor A.V. (2022), Competing Values Leadership, Edward Elgar Publishing.
[9] David S.N., Valas S., Raghunathan R. (2018), Assessing Organization Culture – A Review on the Ocai Instrument, International Conference on Management and Information Systems, Vol. 21, pp. 182–188.
[10] Deal T., Kennedy A. (1988), Corporate Cultures. The Rites and Rituals of Corporate Life (II Edition), Penguin Books, London.
[11] Elnagar A.K., Abdelkawi A., Elshaer I., Salama S. (2022), The Effect of Organizational Culture on Financial Performance: Based on Cameron and Quinn Model (CVF), „Management & Economics Research Journal”, Vol. 4, No. 1, pp. 38–53
[12] Fahrudin N.F. (2021). Sequence Clustering in Process Mining for Business Process Analysis Using K-Means. „MIND (Multimedia Artificial Intelligent Networking Database) Journal”, Vol. 6, No. 1, pp. 16–30.
[13] Fernandes A.A.R. (2018), The Effect of Organization Culture and Technology on Motivation, Knowledge Asset and Knowledge Management, „International journal of Law and Management”, Vol. 60, No. 5, pp. 1087–1096.
[14] George G., Haas M.R., Pentland A. (2014). Big Data and Management, „Academy of Management Journal”, Vol. 57, No. 2, pp. 321–326.
[15] Géron A. (2022), Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, O'Reilly Media.
[16] Griffin R.W. (2016), Fundamentals of Management, Eight Edition, Cengage Learning, Boston
[17] Guo Y., Zhang Z., Tang F. (2021), Feature Selection with Kernelized Multi-class Support Vector Machine, „Pattern Recognition”, Vol. 117, p. 107988.
[18] Handy C. (2007), Understanding Organizations, Penguin, UK.
[19] Hasan B.M.S., Abdulazeez A.M. (2021), A Review of Principal Component Analysis Algorithm for Dimensionality Reduction, „Journal of Soft Computing and Data Mining”, Vol. 2, No. 1, pp 20–30.
[20] Hofstede G. (1984), Culture’s Consequences, Sage Publications, Beverly Hills.
[21] Irnawati J. E., & Prasetyo J. H. (2020), The Influence Over the Transformational of Leadership Style, the Organizational Culture, and Employee Empowerment towards Achievement of Organizational Strategies in one the Central Government Organization., „International Journal of Innovative Science and Research Technology”, Vol. 5, No. 3, pp. 917–927.
[22] Jacques E. (1951), The Changing Culture of a Factory, Routledge, London.
[23] Jouyban M., Khorashadizade M. (2021), Using the Modified k-mean Algorithm with an Improved Teaching-learning-based Optimization Algorithm for Feedforward Neural Network Training, „International Journal of Electrical & Computer Engineering”, Vol. 11, No. 6, pp. 5277- 5285.
[24] Kerdpitak C., Jermsittiparsert K. (2020), The Influence of Organizational Culture, Employee Commitment and Organization Citizen Behaviour on the HRM Practices: Mediating Role of Perceived Organization Support, „Systematic Reviews in Pharmacy”, Vol. 11, No. 1, pp. 407–415.
[25] Leo M., Sharma S., Maddulety K. (2019), Machine Learning in Banking Risk Management: A Literature Review, „Risks”, Vol. 7, No. 1, 29, pp. 1–22.
[26] Marques B.P., Alves C.F. (2020), Using Clustering Ensemble to Identify Banking Business Models, „Intelligent Systems in Accounting, Finance and Management”, Vol. 27, No. 2, pp. 66–94.
[27] Mitchell T.M. (1997), Machine learning, McGraw-Hill Science.
[28] Nguyen Q.H., Ly H.B., Ho L.S., Al-Ansari N., Le H.V., Tran V.Q., Prakash I., Pham B.T. (2021), Influence of Data Splitting on Performance of Machine Learning Models in Prediction of Shear Strength of Soil, „Mathematical Problems in Engineering”, Vol. 2021, pp. 1–15.
[29] Ouchi W. (1980), Markets, Beaucracies and Clans, „Administrative Science Quarterly”, Vol. 25, No. 1, pp. 129–141.
[30] Peters T.J., Waterman R.H. (1984), In Search of Excellence, „Nursing Administration Quarterly”, Vol. 8, No. 3, pp. 85–86.
[31] Priya J. (2020), Predicting Restaurant Rating Using Machine Learning and Comparison of Regression Models, 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), IEEE, pp. 1–5.
[32] Purwandari K., Sigalingging J. W., Fhadli M., Arizky S. N., Pardamean B. (2020), Data Mining for Predicting Customer Satisfaction Using Clustering Techniques. [in:] 2020 International Conference on Information Management and Technology (ICIMTech) (pp. 223–227). IEEE.
[33] Ramdhani A., Ramdhani M. A., Ainisyifa H. (2017), Conceptual framework of corporate culture influenced on employees commitment to organization, „International business management”, Vol. 11, No. 3, pp. 826–830.
[34] Ruževičius J., Klimas D., Veleckaitė R. (2012), Influence of organizational culture on the success of business process management in Lithuanian public sector organizations, „Current Issues of Business and Law”, Vol. 7, No. 1, pp. 1–16.
[35] Santalova M., Zemlyakov D., Lesnikova E., Fatyanova I. (2017), Corporate Culture of Commercial Organization as an Effective Management Tool, [in:] E.G. Popkova, V.E. Sukhova, A.F. Rogachev, Y.G. Tyurina, O.A. Boris, V.N. Parakhina (Eds.), Integration and Clustering for Sustainable Economic Growth. Contributiona to Economics, Springer, Cham, pp. 101–110.
[36] Schein E. H. (2010), Organizational Culture and Leadership, Third Edition, John Wiley & SOns.
Sułkowski Ł. (2008), Czy warto zajmować się kulturą organizacyjną, „Zarządzanie Zasobami Ludzkimi”, Nr 6, s. 9–25.
[37] Tabianan K., Velu S., Ravi V. (2022), K-Means Clustering Approach for Intelligent Customer Segmentation Using Customer Purchase Behavior Data, „Sustainability”, Vol. 14, No. 12, p. 7243.
[38] Thavareesan S., Mahesan S. (2021), Sentiment Analysis in Tamil Texts Using k-means and k-nearest Neighbour, 2021 10th International Conference on Information and Automation for Sustainability (ICIAfS), IEEE, pp. 48–53.
[39] Wei X., Li H., Yue W., Gao S., Chen Z., Li Y., Shen G. (2022), A High-accuracy, Real-time, Intelligent Material Perception System with a Machine-learning-motivated Pressure-sensitive Electronic Skin, „Matter”, Vol. 5, No. 5, pp. 1481–1501.
[40] Zheng W., Yang B., McLean G.N. (2010), Linking Organizational Culture, Structure, Strategy, and Organizational Effectiveness: Mediating Role of Knowledge Management, „Journal of Business Research”, Vol. 63, No. 7, pp. 763–771.
[41] Zekic-Susac M., Sarlija N., Bensic M. (2004), Small Business Credit Scoring: A Comparison of Logistic Regression, Neural Network, and Decision Tree Models, 26th International Conference on Information Technology Interfaces, IEEE, pp. 265–270.